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Motivation

uman eyes are incredible sense organs. They can capture images with great detail and the

vision system as a whole can perceive those images to extract complex pieces of

information. We set out to capture the information in images and encode them as patterns

of vibrations on the human skin. The goal is to enable a visually impaired person to
perceive those vibration patterns as images.

Introduction

Back in the 1960s, Paul Bach-y Rita conducted some of the first experiments in translating images from a
camera feed to vibrations on the skin. He installed a grid of 400 vibrating plates on a chair that displayed
images coming from a camera feed. He had blind people train with it and interpret those vibrations as
representing objects in front of the camera. Based on their responses, he believed those vibrations were
being processed by the visual cortex, the part of the brain associated with perceiving images. This
indicated that the brain is plastic enough so that in the blind, the new vibration stimuli was perceived as
vision.

For our project, we focused on encoding single images (as opposed to a video feed) as time-varying
vibration patterns. We used a chest strap called the Link built by NeoSensory. It has eight vibrating
actuators that we can control wirelessly.

We experimented with several encoding schemes to map images onto vibration patterns which we will
describe in this post but first, here’s what elementary school kids thought of our final choice of the
encoding scheme.
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Outreach Event

Our project stall at the event and pictured in it — Daredevil our
mascot

Over the last weekend, we presented our project to kids from Nixon Elementary School. As part of the
event, we prepared a technical demonstration of the project prototype for the students — to wear the Link
and play a game designed to test how well they could decode vibrations produced by the Link. Before they
played the game, they trained up on six vibration patterns representing six different images — of a dog and
a man doing one of the three different things: eating, sleeping or running. The kids wore the Link around
their chest and the Link “told them” what the image was. For example, an image of a dog running on the
beach produced a pattern corresponding to “A do-g i-s run-ning on the bea-ch”. The objective of the game
was to identify the subject and the action being performed by the subject in a particular image based only
on the vibrations on the Link.

Picture of a dog running on a beach
PC - Wikipedia

During the test, the kids were shown 6 new images of combinations of the subject performing different
activities and were scored for correctly identifying the two categories with 12 being the maximum points.
The kids might have initially been lured with the prospect of having their names on the leaderboard and
of course by the candy at our table, but once they started the challenge, they couldn’t stop. One student, Ile
came back a second time to try his luck! Ben was a curious and a rather serious kid, who took the game
controls in his hands and navigated through the game-app on his own, scoring 10/12.



A kid wearing the Link and playing the game
He later told us his cheat code; he focused on the location of vibrations more towards the right for “man”
and slightly to the left and the middle for “dog” or how each sentence started with a distinct heavy
vibration on one side corresponding to “A” or er .

This kind of reasoning was given by a few
other kids, leading us to think of the
demonstration/game as a good proof of
concept for the viability of the proposed
technology.

In total, we had 15 participants who played
the game on the Link and scored an
average score of 6.8/12 or 57%, all this with
a basic training on 6 images shown within
a one minute timeframe.
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Implementation Details

Encoding Scheme Design
In designing an encoder, we used the following general guidelines:

¢ The encoding should be easy to learn or alternatively there needs to be an explicit training method to
teach users how to make sense of the encoding

e There exists a decoder that can reconstruct the conveyed information with minimum distortion

¢ Users should be able to distinguish classes of objects (eg. dog vs human) in the image and what action is
being performed (eg. running, eating, sleeping)

Encoding with language



The encoding scheme that the elementary school kids tried out relies on English speech comprehension.
We transform an image into a vibration pattern with the following steps:

1. Image to Text: Using an image captioning deep learning model called im2txt trained on a large image
dataset, we generated captions for our selected images.
2. Text to phonemes: The text output of im2txt is converted to phonemes. Phonemes are the building

blocks of speech; there are 44 of them in the English language each representing a speech sound. The
primary reason for doing this conversion is that there are fewer phonemes needed than letters per word.
Eg. “Aman is running” -> [ax, m, ae, n, pause, ih, z, pause, r, ah, n, ax, ng]. We used a python library called
phonemizer to do this.

3. Phonemes to vibration frames: We convert each phoneme into a vibration frame to be played out for a
fixed duration of 80ms. To build the mapping itself, we first found 44 distinguishable vibration patterns
experimentally and rank-ordered them by how easy they were to distinguish (i.e patterns with low human
decoding confusion error). Second, we listed the phonemes in the order of frequency of occurrence in
English speech. Then we associated the most frequent phoneme symbols with the most distinct vibration
patterns following their rank-ordering. To see a more sophisticated approach, see the last section of the
blogpost (modeling the human as a noisy channel).

We think this is a practical approach to the problem because it captures in words, what is going on in an
image. Can a human reconstruct the original image from these words? With perhaps enough descriptive
words as demonstrated by work done by Tsachy’s group: “Humans are still the best lossy image
compressors”. There, a human was asked to reconstruct an image based solely on the image description
and textual directions communicated by another human. They found some of the reconstructions to
outperform some of the state of the art results in lossy image compression.

Other encoding schemes

We experimented with several other schemes. While the previous encoding scheme relied on language, in
the other schemes we tried encoding the low-level features that make up an image.

JPEG-like Discrete Cosine Transform

JPEG is a popular lossy image compression format. At its heart is the discrete cosine transform which is a
linear transformation of the image data. It changes the basis of the image to a set of cosines with different
frequencies. After the DCT transformation, most of the energy is concentrated in a few coefficients usually
representing the low frequency cosine components. We can then keep the top K coefficients to represent
the entire image and zero out the rest. This works well if we take small blocks of the image at a time. We
experimented with 8x8 image blocks, taking their DCT and keeping the top eight lowest frequency
coeflicients. Thus, for a 64x64 pixel image, we have 64 8x8 blocks. Then we use the Hilbert space-filling
curve to arrange each encoded 8x8 block across time i.e we get 64 8-dimensional vibration frames to be
played out on the Link (for the motivation behind the Hilbert curve, check out this video on the subject). If

each vibration frame is played out for 32ms, each image has a vibration pattern that lasts roughly two
seconds.

Another DCT based-approach we tried emphasized spatial information. We took a grayscale image, and
split it into two halves vertically — the left side was to be represented by the left four motors of the Link
and the right side was to be represented by the right four motors. Then we broke up the image
horizontally into overlapping frames and did a DCT based encoding. For example, for an image of
100x100 pixels and 50x50 sized horizontally overlapping blocks, we get three 8-dimensional motor
encoding frames to be played out one by one over time. The second frame in this example is redundant
and within each frame, the left motors only represent the left side of the image and similarly for the right
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four motors. The idea behind this scheme was to encode some notion of where the objects are in the
image as actual spatial location on the Link.

The non-negativity problem: The motor encoding is inherently non-negative since the motors can
vibrate only at fixed non-negative intensity levels. One solution to this problem is to zero out negative
DCT coefficient values. This leads to large reconstruction error. Another approach is to simply shift up the
DCT coefficients so that they are never negative but this leads to an encoding that is not-so-easy to
interpret — zero (black image) does not map to zero (no vibrations).

Onginal image Hal{f)-wave rectified DCT coefficients
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To solve the non-negativity problem, we experimented with the idea of using data and machine learning
to come up with an alternate to the DCT which has similar compression properties but leads to non-
negative coefficients. This was based on good results in lossy compression using a method called projective
non-negative matrix factorization (pnmf) in this paper. To test it for ourselves, we designed an auto-
encoder to achieve the same effect as pnmf.

Non-negative linear auto-encoder

We designed an auto-encoder that transforms each 8x8 image block (64 dimensional) into an 8
dimensional embedding vector using a linear transformation matrix W. The decoder part of the auto-
encoder is simply WT . We enforced non-negativity in the weights and the embedding vector. Using
stochastic gradient descent we optimized the weights for W on reconstruction mean squared error on a
small image dataset. The results were mixed:
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Top row: Original 88 image blocks

Middle row: Decoded/reconstructed image
Last row: 8-dimensional motor intensity embedding vector

The auto-encoder approach is a promising avenue for designing non-negative embeddings. With perhaps
a larger training dataset and a more expressive non-linear machine learning model (eg. WaveOne), we

could design good data-driven encoding schemes.

Modeling human perception as a noisy channel

In our final encoding scheme that used language we had to find a good mapping for each of the 44
phonemes to a vibration pattern. We revisited this problem after the outreach event and tried to solve it
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more algorithmically.

The problem can be defined as finding an encoder that assigns to every source output symbol (phoneme)
one channel input symbol (vibration). Here, our channel is the human skin+perception. Our vibration
frame for every phoneme is defined as an 8-dimensional vector (for 8 motors) with each value indicating
vibration strength. If we are to assume a noiseless channel i.e a human has perfect decoding capability for
every possible vibration pattern, then we have no problem — we can map a phoneme to any arbitrary 8-D
vector. We can simplify our solution by placing constraints on the 8-D vector. Two simple constraints are
(a) imposing a sparsity of 2 so that only 2 motors are on at a time (b) each motor can either be on or off.

With these constraints, we only get | )+ L) = 3 hon-zero possibilities so that’s not enough for 44

phoneme symbols. What if we allowed three motor states: O for OFF, 1 for half intensity, 2 for full
intensity? Now, we have (/2 (127 = 128 possibilities. Thus, a good start might be to use a sparsity of two
and, three states for each motor. Now we can choose any 44 of the 128 possibilities if the human channel is

noiseless.

If you have ever tried decoding vibration patterns before you will know that it’s not easy; the human skin is
a very noisy channel especially without training. Are 128 possibilities really enough for a n01sy channel? A
noisy channel is characterized by the conditional probability of the output given the input '} = 1|\
which captures for each input r, how likely a human is to decode it as . Through actual testing on humans,
we can perhaps come up with these conditional probabilities for all combinations (128x128) but that is
tedious. Maybe we can design a simple model for the human decoding confusion graph. What could be

some safe assumptions regarding the expected human decoding error?

e There is a high probability of decoding error between each consecutive motor state eg. half intensity
(state 1) and full intensity (state 2).

¢ There is a high probability of decoding error between neighboring motors. An active motor some
distance away from another active motor leads to a higher probability of error than one further away.

With these two assumptions regarding decoding error probabilities, our next step is designing a good
distance metric between the 128 8-D vectors that captures the error probabilities. We used a ternary Gray
code for generating the 128 possibilities in an order which constraints consecutive codes from having a
hamming distance of 1. The Gray codes look like:

'00000001 " &
'00000002 " :
'00000012":
'00000011":
'00000010"':
'00000020" :
'00000021":
'00000022"':
'00000120":
'00000110":
'00000102"':
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'01000010': 81
'01000002"': 82
'01000001': 83



'01000000"': 84
'02000000"': 85
'02000001"': 86
'02000002"': 87
'02000010': 88

'20100000': 124
'20200000': 125
'21000000': 126
'22000000': 127

The codes above have 8 digits each representing a motor and as before, {0, 1, 2} represent the motor state.
We removed the zero encoding with the assumption that a user can decode the no-vibrations state reliably.
We also filtered out all the Gray codes that have more than 2 motors on at a time. You'll notice that this
ordering captures distances between encodings well. For example, the first state ‘00000001 has one motor
ON at half-intensity; the last state is ‘22000000’ which have 2 motors farthest away in spatial distance and
at maximum intensity. The codes we generated used the algorithm in this paper by Guan. It has the nice
property that the count of the motor state alternately rises and falls as opposed to cycling through.

Our goal is to assign to the most frequently occurring phoneme in English speech to the most
distinguishable vibration. To find a rank-ordered list of distinguishable vibration encodings, we can start
with the first gray code, find the one farthest away from that one, then the gray code most equidistant from
both the first and second encodings and so on. This translates to clustering the 128 possibilities into 44
uniformly spaced intervals but ordering them by the above procedure.

Results and Conclusions

In the game played with the elementary school students we observed scores better than random chance in
identifying the underlying image through only vibrations on the chest. The proposed design can be
further explored to achieve better performance with better training, incentives and encoding schemes. The
test results indicate that good encoding of information from a conventional domain (images seen through
eyes) to another sensory modality (tactile signals felt on skin) is possible and useful; it a promising step
towards an alternative assistive tech empowering the visually impaired.
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