
% LMS: A stochastic gradient descent algorithm inspired by neurobiology
Abhipray Sahoo, Jake Kaplan, Stephane Remigereau

Stanford University 2019

Motivation

Dr. Bernard Widrow proposed a linear neuron
model, Hebbian-LMS, that learns via % LMS.

Inputs → firing rate of pre-synaptic neurons
Weights → number of neuroreceptors at the
dendrite of a living neuron
Output → firing rate
Training → minE[e2

k]
Concentration of neuroreceptors in living neurons
changes via synaptic scaling; weights of the neu-
ron model ↑ or ↓ as a multiplicative factor instead
of additively leading to the %-LMS update rule.
We explore properties, performance and exten-
sions.

Convergence

Does it converge?

How does it do with different shapes of the
quadratic cost function?

Observation: Cost Function

A neuron updates its weight θ to minimize:
min d(θk+1, θk) + αJ(θk+1) (1)

Set the gradient w.r.t θk+1 to 0 after assuming
∇θk+1J(θk+1) ∼ ∇θkJ(θk)

∇θk+1d(θk+1, θk) + α∇θkJ(θk) = 0 (2)
J(θk) = MSE = ||yk − θTk xk||22 (3)

LMS → d(θk+1, θk) = ||θk+1 − θk||22
%LMS → d(θk+1, θk) = Σ|θ|j=1

(θk+1,j−θk,j)2

θk,j

%LMS updates to minimize relative change in
weights. Big weights adapt faster.

Observation: Non-negativity

Weights have to be non-negative because
1 Negative weights grow more and more negative.
2 Zero weights stop changing due to multiplication.
To prevent the weight becoming negative, the learn-
ing rate is bounded:

αk ≤
1

εkxk
∀k (4)

% LMS

θk+1 = θk + αεkxk ◦ θk
= (1 + αεkxk) ◦ θk

xk → input, θk → weight vector, α→ learning rate, εk → the error (yk−θTxk), ◦ → element-wise product

Generalized Algorithm and
Variance

Extend % LMS for negative weights:
θk+1 = (1 + αεkxksign(θk)) ◦ (θk) (5)

sign(θk) =



1 θk ≥ 0
−1 θk < 0

(6)

Add noise to prevent convergence to 0:

θk+1 = (1 + αεkxksign(θk) + ~g(θk)) ◦ (θk) (7)

gi(θk) =



z ∼ N (0, ε2) −ε2 < (θk)i < ε2

0 else
(8)

1 Might not converge to small θ∗ if ε too large.
2 False convergence to 0 if ε too small.
Solution: Set ε2

k = |α∇J(θk)| = |αεkxk|.
Results: All % LMS models showed convergence
improvement; ε2 = ∇J minimized loss deviation.

Variance Experimental Results

Figure 1: 100 trial full-batch Poisson regression comparing de-
viation in loss (from LMS) against convergence rate of standard
LMS to % LMS with values of ε2 ∈ {∇J, 10−3, 10−4, 10−5}.
×, .,4,O denote mean, median, and upper/lower quartiles.

Applications of General % LMS

Logistic Regression Classification
LMS %LMS Newton

Initialization 0 Random 0
Iterations 13442 6032 941
Accuracy 83% 83% 83%

Figure 2: LMS Classification vs %LMS Classification

Neural Network MNIST Classification
Architecture: single hidden layer with 150 sig-
moid units, softmax output layer
Training: epochs=20, batch size=20, learning
rate=0.1, cross-entropy loss, 50K MNIST examples
Testing: 10K MNIST examples.

LMS %LMS
Training loss 0.10528 0.14121
Test loss 0.3178 0.3279
Accuracy 92.21% 91.02%

Figure 3: MNIST neural network training with LMS vs %LMS

Acknowledgements

We would like to thank Dr. Bernard Widrow for
sharing his ideas and his guidance.
Widrow, B., Kim, Y., & Park, D. (2015). The Hebbian-LMS
learning algorithm. IEEE Computational intelligence maga-
zine

Next Steps

1 Derive convergence properties and learning
curve analytically

2 Compare the performance of % LMS when
classifying different distributions (so far only
Guassian and Poisson distributions analyzed)

