% LMS: A stochastic gradient descent algorithm inspired by neurobiology

Motivation

Dr. Bernard Widrow proposed a linear neuron
model, Hebbian-LMS, that learns via % LMS.

>

Weights

(SUM)
X, o J/
Input

Pattern @ siGMOID

Vector \
—/\[1

Inputs — firing rate of pre-synaptic neurons
Weights — number of neuroreceptors at the
dendrite of a living neuron

Output — firing rate

Training — min E[e?]

Concentration of neuroreceptors in living neurons
changes via synaptic scaling; weights of the neu-
ron model 7 or | as a multiplicative factor instead
of additively leading to the %-LMS update rule.
We explore properties, performance and exten-
sions.

T W WY
L NIV

£y
o

Convergence

Does it converge?

How does it do with different shapes of the
quadratic cost function?

Effects of eigenvalue spread of auto-correlation matrix

0000000

Amax

Abhipray Sahoo, Jake Kaplan, Stephane Remigereau
Stanford University 2019

Observation: Cost Function

A neuron updates its weight 6 to minimize:
min d(9k+1, (Qk) + &J(9k+1> (1)
Set the gradient w.r.t 0,1 to 0 after assuming

Vo, J(Or1) ~ Vo, J(0k)

vek+1d(9k+1, Qk) -+ ()év(gkj(ek) — () (2)
J(0r) = MSE = ||y — Oy 1|5 (3)
LMS — d(9k+1, @k) — H(9/€+1 — le‘%
BLMS — d(01,0;) = S Oevr =0

Ok.j

%LMS updates to minimize relative change in
weights. Big weights adapt faster.

Observation: Non-negativity

Weights have to be non-negative because

® Negative weights grow more and more negative.

@ Zero weights stop changing due to multiplication.

To prevent the weight becoming negative, the learn-
ing rate is bounded:

X[< — V& (4)

9k+1 — 6’k T— XELT) O (9145

= (1-

B ozekxk) O Qk

r; — input, 6 — weight vector, a — learning rate, e, — the error (y — QTxk), o — element-wise product

Generalized Algorithm and
Variance

Extend % LMS for negative weights:

9k+1 — (1 + ozekxksign(é’k)) O (Qk) (5)
1 6, >0

sign(6;.) = - 6
gn(0k) =) 9, < 0 (6)

Add noise to prevent convergence to 0:
Ok = (1 + cepapsign(Or) + G(0k)) o () (7)
2~ N(0,%) —e? < (0); < &2
gi(0) he e

0 else

|
N\
Q0
SN———

©® Might not converge to small 8 if € too large.

@ False convergence to 0 if € too small.

Solution: Set £7 = |aVJ(0;)| = |aerzy|.
Results: All % LMS models showed convergence
improvement; e = V.J minimized loss deviation.

Variance Experimental Results

2000 1 & % Ims
X %grad
4500 X %le-3
W %le-4
4000 + % 9%le-5
3500 -
- A A
£ 3000 4 ,
o 5
U A
= 2500 -
X %
2000 A
b
>
1500 4 »
¥
1000 - :
]]]]]]]
0.00 0.02 0.04 0.06 0.08 0.10 0.12

loss deviation

Figure 1: 100 trial tull-batch Poisson regression comparing de-
viation in loss (from LMS) against convergence rate of standard

LMS to % LMS with values of €2 € {V.J,107%,107%,107°}.

X, >, /A, V denote mean, median, and upper/lower quartiles.

Applications of General % LMS

Logistic Regression Classification

LMS %LMS Newton
Initialization 0 Random 0
[terations 13442 6032 941

Accuracy 83% 83% 83%

e b
.’SK. .’SK.

x x X X x x X x
X, X X, X
X §§< X % XX ”éﬁ(X X
o 51 o

5 * 4° e ,°
[] e x L [] x
lap Bacopor oS Fhe 1 s Macupop ™o BhE I ¢
-1 0 1 2 -1 0 1 2

Figure 2: LMS Classification vs %LMS Classification

Neural Network MINIST Classification

Architecture: single hidden layer with 150 sig-
moid units, softmax output layer

Training: epochs=20, batch size=20, learning
rate=0.1, cross-entropy loss, bOK MNIST examples
Testing: 10K MNIST examples.

LMS SLMS
Training loss 0.10528 10.14121
Test loss 0.3178 0.3279

Accuracy 92.21% 91.02%

eeeeeeeeeeee

Figure 3: MNIST neural network training with LMS vs %LMS

Acknowledgements

We would like to thank Dr. Bernard Widrow for

sharing his ideas and his guidance.

Widrow, B., Kim, Y., & Park, D. (2015). The Hebbian-LMS
learning algorithm. IEEE Computational intelligence maga-
zine

Next Steps

® Derive convergence properties and learning
curve analytically

® Compare the performance of % LMS when

—

classifying different distributions (so far only
Guassian and Poisson distributions analyzed)

