% LMS: A stochastic gradient descent algorithm inspired by neurobiology

Motivation

Dr. Bernard Widrow proposed a linear neuron model, Hebbian-LMS, that learns via % LMS.

Inputs \rightarrow firing rate of pre-synaptic neurons Weights \rightarrow number of neuroreceptors at the dendrite of a living neuron

Output \rightarrow firing rate

Training $\rightarrow \min \mathbb{E}[e_k^2]$

Concentration of neuroreceptors in living neurons changes via synaptic scaling; weights of the neuron model \uparrow or \downarrow as a multiplicative factor instead of additively leading to the %-LMS update rule. We explore properties, performance and extensions.

Convergence

Does it converge?

How does it do with different shapes of the quadratic cost function?

Abhipray Sahoo, Jake Kaplan, Stephane Remigereau

Stanford University 2019

Observation: Cost Function

A neuron updates its weight θ to minimize:		W
$\min d(\theta_{k+1}, \theta_k) + \alpha J(\theta_{k+1})$	(1)	1
Set the gradient w.r.t θ_{k+1} to 0 after assuming		2
$ abla_{ heta_{k+1}} J(heta_{k+1}) \sim abla_{ heta_k} J(heta_k)$		Te
$\nabla_{\theta_{k+1}} d(\theta_{k+1}, \theta_k) + \alpha \nabla_{\theta_k} J(\theta_k) = 0$	(2)	in
$J(\theta_k) = \text{MSE} = y_k - \theta_k^T x_k _2^2$	(3)	
$\mathbf{LMS} \to d(\theta_{k+1}, \theta_k) = \theta_{k+1} - \theta_k _2^2$		

 \mathcal{H} LMS $\rightarrow d(\theta_{k+1}, \theta_k) = \sum_{j=1}^{|\theta|} \frac{(\theta_{k+1,j} - \theta_{k,j})^2}{\theta_{k,j}}$ %LMS updates to minimize relative change in weights. Big weights adapt faster.

% LMS

 $\theta_{k+1} = \theta_k + \alpha \epsilon_k x_k \circ \theta_k$ $= (1 + \alpha \epsilon_k x_k) \circ \theta_k$ $x_k \to \text{input}, \theta_k \to \text{weight vector}, \alpha \to \text{learning rate}, \epsilon_k \to \text{the error} (y_k - \theta^T x_k), \circ \to \text{element-wise product}$

Generalized Algorithm and Variance

Extend % LMS for negative weights:

$$\theta_{k+1} = (1 + \alpha \epsilon_k x_k \operatorname{sign}(\theta_k)) \circ (\theta_k) \qquad (5)$$

$$\operatorname{sign}(\theta_k) = \begin{cases} 1 & \theta_k \ge 0 \\ -1 & \theta_k < 0 \end{cases}$$
(6)

Add noise to prevent convergence to 0:

$$\theta_{k+1} = (1 + \alpha \epsilon_k x_k \operatorname{sign}(\theta_k) + \vec{g}(\theta_k)) \circ (\theta_k) \quad (7)$$

$$y_i(\theta_k) = \begin{cases} z \sim \mathcal{N}(0, \varepsilon^2) & -\varepsilon^2 < (\theta_k)_i < \varepsilon^2 \\ 0 & \text{else} \end{cases}$$
(8)

1 Might not converge to small θ^* if ε too large. **2** False convergence to 0 if ε too small.

Solution: Set $\varepsilon_k^2 = |\alpha \nabla J(\theta_k)| = |\alpha \epsilon_k x_k|$. **Results:** All % LMS models showed convergence improvement; $\varepsilon^2 = \nabla J$ minimized loss deviation.

Figure 1: 100 trial full-batch Poisson regression comparing deviation in loss (from LMS) against convergence rate of standard LMS to % LMS with values of $\varepsilon^2 \in \{\nabla J, 10^{-3}, 10^{-4}, 10^{-5}\}.$ $\times, \triangleright, \Delta, \nabla$ denote mean, median, and upper/lower quartiles.

Observation: Non-negativity

Veights have to be non-negative because

Negative weights grow more and more negative. Zero weights stop changing due to multiplication.

To prevent the weight becoming negative, the learnng rate is bounded:

$$\alpha_k \le \frac{1}{\epsilon_k x_k} \quad \forall k \tag{4}$$

Variance Experimental Results

zine

• Derive convergence properties and learning curve analytically • Compare the performance of % LMS when classifying different distributions (so far only Guassian and Poisson distributions analyzed)

Applications of General % LMS

Figure 2: LMS Classification vs %LMS Classification

Neural Network MNIST Classification

Architecture: single hidden layer with 150 sigmoid units, softmax output layer

Training: epochs=20, batch size=20, learning rate=0.1, cross-entropy loss, 50K MNIST examples **Testing:** 10K MNIST examples.

Figure 3: MNIST neural network training with LMS vs %LMS

Acknowledgements

We would like to thank Dr. Bernard Widrow for sharing his ideas and his guidance.

Widrow, B., Kim, Y., & Park, D. (2015). The Hebbian-LMS learning algorithm. IEEE Computational intelligence maga-

Next Steps