
Audio Super Resolution - Final Report

Chi Wang, Zheng Yuan and Abhipray Sahoo
{chiwang,zyuan84,abhipray}@stanford.edu

1 Introduction

Generative modeling of audio signals can be useful for the task of super audio resolution. Our task is
to reconstruct high-quality audio from a low-quality, down-sampled input containing only a small
fraction (15- 50%) of the original samples. This would be very useful in various applications such as
voice/music recognition, telephony, compression, text-to speech generation, and other domains.

In signal processing literature, this problem is also called bandwidth extension or upsampling since
increasing sample rate leads to generation of high frequency components. Usual techniques like
low-pass filtering after zero-filling in-between samples, leads to no new information content in the
high frequencies. Our problem is to use learned prior statistics of a typical speech file to predict these
high frequencies from the low frequencies of the audio.

Figure 1: generate new time-domain samples in an audio signal

We saw many success stories of applying neural network on image super resolution, but not so many
in audio field. The traditional data augmentation approaches like mathematical interpolation and
standard neural network does not work very well. So we want to leverage generative approach to
help upsampling from a low resolution audio file with high quality, and we hope to get it work as
lightweight fashion, so we could apply it in real-time product.

In this project, we explore three different generative models for bandwidth extension and compare
them.

2 Related Work

Our project is heavily influenced by following two approaches: audio super resolution (Volodymyr
Kuleshov et al., 2017)[1] and image super-resolution algorithms (Dong et al., 2016) [2], which use
customized asymmetric auto-encoding/decoding techniques to interpolate a low-resolution image into
a higher-resolution one. We choose it as a baseline approach since it runs efficiently and potentially
could generate good results. In order to improve the performance, we designed a more sophisticated
upsampling block and replaced the original upsampling block in the decoder.

Since we are also interested in how pure generative algorithm performs on this setting, we explored
two purely generative approaches: "WaveGlow: A Flow-based Generative Network for Speech
Synthesis" [3] and "sampleRNN: an unconditional neural audio generation model" [4], then compare
them with the auto encoder like approach.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

3 Problem Statement

The problem is to reconstruct a low resolution signal x = {x1

r1
, ...,

xr1t1

r1
} sampled at a rate r1, to a

high resolution version y = {y1r2 , ...,
yr2t2

r2
} of x that has a sampling rate r2 > r1. For example, x

may be a voice signal recorded at 4 KHz,we try to reconstruct sequence y as a high resolution 16KHz
of the original (x) if we choose upsampling rate as 4.

3.1 Dataset

For voice dataset, we use the VCTK dataset (Yamagishi) — which contains 44 hours of data from
108 different speakers, each audio file is nearly 30 seconds long. These are all high quality audios.
To get low resolution audio, we down sample them at rate 1/2,1/4 and 1/6, we pair the low resolution
down sampled audio with the original audio for training. See the example below.

Figure 2: Spectrum of high/low resolution audio files

Dataset download and process code could be found here: VCTK voice data download and process
code

The LJSpeech dataset is used to train the WaveGlow model. This dataset contains roughly 24 hours
of speech from a single speaker with each clip being between 1-10seconds. The dataset can be found
at https://keithito.com/LJ-Speech-Dataset/.

4 Technical Approach

4.1 Approach: Upsample decoder

This is based on the paper audio super resolution (Volodymyr Kuleshov et al., 2017)[1]. Continuing
from problem statement section, for low resolution signal x and its reconstructed signal y, we use
r = r2

r1
to denote the upsampling ratio of the two signals, which in our work equals r = 2, 4, 6. We

thus expect that we could train a model to produce below result:

yrt
r2
≈ xt
r1
, fort = 1, 2, ..., t1r1

To recover from the low resolution signal, we want to define a neural network to learn p(y|x) of
the heigher-resolution y, condition on its low resolution sequence x. We assume that relationship
between the time series x, y follows the equation y = fθ(x) + ε, where ε ∼ N (0, 1) is Gaussian
noise, and we could get a fθ(x) is close to values sampled from p(y|x), we might also try more
complex noise models for ε if there is time.

2

https://github.com/wcAlex/audio-super-res-imgres-approach/blob/master/data/vctk/prep_vctk.py
https://github.com/wcAlex/audio-super-res-imgres-approach/blob/master/data/vctk/prep_vctk.py
https://keithito.com/LJ-Speech-Dataset/

4.1.1 Architecture

We kept the original architecture in audio super resolution (Volodymyr Kuleshov et al.,2017)[1], and
add more Conv layer in the upsampling block and more U blocks in decoder, we hope it could capture
more wavelet-style features with new added layers.

Figure 3: Model Architecture

4.1.2 Loss Function

From above model architecture, it naturally leads to a mean squared error (MSE) objective:

loss(Dataset) =
1

n

√√√√ n∑
i=1

‖yi − fθ(xi)‖22

Since we have the original audio file associated with reconstructed high resolution audio, this loss
function could be calculated easily.

4.2 Approach: WaveGlow

WaveGlow is a normalizing flow model that explicitly models the probability distribution of audio
sample sequence x conditioned on a mel-spectrogram representation h of the audio p(x|h). It
generates samples by first drawing a hidden random vector z from a standard normal distribution
and applying a bijective series of transforms to get audio samples. It is trained by maximizing the
log-likelihood of the data. The data in this case is pairs of a limited resolution mel-spectrogram and
the original high-resolution audio samples.

Figure 4: bandwidth extension with WaveGlow

3

Once WaveGlow’s generative model has been trained, we can apply it for the downstream task of
super audio resolution by simply conditioning on the mel spectrogram of the low resolution audio
and drawing samples from the the standard normal distribution for the hidden latent variable.

The architecture of the network involves combination of Wavenet-like[5] diluted convolution opera-
tions with Glow’s[6] multi-scale architecture that includes several steps of flows. Each flow has an
invertible 1x1 convolution layer that learns weights for a random rotation permutation matrix, and an
affine coupling layer that allows the bijective transformation to be lower-triangular.

The reason we chose WaveGlow as a generative model is because the flow model has fast synthesis
compared to other models like WaveNet. While WaveNet has been modified to have faster generation
via parallel wavenet[7], it is still challenging to train requiring a two step teacher-student training
procedure.

5 Results

As evaluation metric, we use Signal to Noise Ratio (SNR) to compare the upsampled audio with
original audio. Given a reference signal y and an approximation x, SNR is defined as:

SNR(x, y) = 10log
‖y‖22
‖x− y‖22

We also use the Log Spectral Density defined as:

LSD(x, y) =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

(X(l, k)− X̂(l, k))2

LSD measures reconstruction quality as a function of the spectrogram.

5.1 Result: Upsample decoder

5.1.1 Training Metric

Average metrics original architecture in paper upgraded architecture

LSD 16.98 (dB) 17.3 (dB)
SNR 17.1 (dB) 17.5 (dB)

Table 1: Average SNR and LSD of upsampling reconstruct audio files across all 250 validation
samples.

4

5.1.2 Audio Spectrum Comparison

Figure 5: Audio spectrum on original model in paper

Figure 6: Audio spectrum on enhanced model

5.1.3 Analysis

Baseline: For approach 4.1 - Upsample decoder, we choose the architecture defined in paper [1] as
baseline, and trained both upgraded model and original model on VCTK dataset (108 speaker, 44
hours audio) to see if there is any improvement.

Evaluation: During test stage, we run both models on 250 preserved audio files (16KHz) from
VCTK dataset, which takes these audio files as high resolution files, downsample to low resolution
audios (4KHz) and then reconstruct it back to 16KHz. Finally, We calculate the average SNR and
LSD between the high resolution audio and the reconstructed audio files, and compare their numbers.
The result is list in Table 1 (see above)

By looking at the LSD and SNR result, we find the model performance is nearly the same between
the enhanced model and original model, it seems like adding more convolution layer and connect
layer doesn’t make dramatic improvement. We want to experiment on different hyper-parameter and
different downsampling algorithm as next step.

5.2 Result: WaveGlow

Training: In our experiments, we re-trained the model from scratch on VCTK but did not get
intelligible speech generation after a week of training. Instead, for model comparisons we used

5

pre-trained weights trained on the LJSpeech dataset; the training was done with mel-spectrogram
that has 80 mel frequency values between 0-8KHz. The sample rate of audio during training was
22.05KHz.

Baseline: The baseline is Resampy’s implementation [8] of an upsampler that uses a high-quality
Kaiser window for the low-pass filter in the upsampling step.

Evaluation: During test time, we generate the melspectrogram of a 16Khz audio and upsample via
WaveGlow to 22.05Khz audio.

Qualitative analysis: The generated audio is highly intelligible but the SNR is low due to artifacts
from the model’s biases such as periodic hums (see strong high frequency lines in figure 4). Addition-
ally this method alters the original low frequency information; therefore in the future, we will explore
conditioning the WaveGlow network with the original audio samples so only the high-frequency
components are generated.

Quantitative analysis: The following example figure and table compares the performance of Wave-
Glow to the chosen baseline. The table captures the average SNR and LSD measured on ten audio
samples. The WaveGlow generated audio performs worse on both the SNR and LSD metrics than the
baseline. We note that through subjective listening tests that the worse SNR and LSD numbers do not
imply bad listening quality.

Figure 7: Example upsampling by Resampy and WaveGlow

Average metrics (dB)

WaveGlow LSD 7.573473
Kaiser LSD 6.437214

WaveGlow SNR -3.302849
Kaiser SNR 17.047472

Table 2: Average SNR and LSD of upsampled files across ten different samples.

5.3 Upsample decoder vs WaveGlow

Since our upsample decoder only work on integer sampling rate when reconstructing low resolution
audio (ex: 4KHz to 16KHz with scale as 4) and the pretrained WaveGlow model only works
upsampling audio file from 16KHz to 22.5KHz, it is difficult to do an apple to apple comparison
between these two models. Instead, we pick a random audio file from LJSpeech dataset, feed it to
both model and compare their SNR / LSD on the results. (See result below in Table 3)

6

Average metrics WaveGlow Upsample Encoder

LSD 7.6 (dB) 10.5 (dB)
SNR 15.6 (dB) 11.7 (dB)

Table 3: SNR and LSD of upsampling reconstruct audio files on 5 audio files in LJSpeach dataset.

From the result, we see WaveGlow model perform better than Upsample encoder, but as we mentioned
above, this is not a strong evidence to show WaveGlow is better, since we run Upsample decoder on a
dataset it never seen and their upsample rate is different, one is 4KHz to 16KHz, another is 16KHz to
22.5KHz. As a next step, we need to udpate both models to get them work on same upsampling rate
to get a fair comparison.

6 Code

Code and analysis scripts for our WaveGlow model can be found at
https://github.com/Abhipray/waveglow, for upsample encoder approach, code can be found
at https://github.com/wcAlex/audio-super-res-imgres-approach.

7 Conclusion

In this project, we explored three different kinds generative approaches in audio bandwidth extension
field. One is to extend auto-encoder architecture in [1] by replacing the decoder part with more
sophisticated upsampling block. Second one is WaveGlow [3], which uses normalized flow method
and the third one is SampleRNN 8 which we didn’t get to the release stage due to time constraints
and the complexity of extending it to be conditioned on low resolution audio files.
Based on our experiments, we conclude that our Upsample Encoder method has a little improvement
over the original model and WaveGlow seems to perform better qualitatively although its upsampling
factor is lower and so is dealing with a simpler problem.

8 Future Work: SampleRNN based approach

We argue that sampleRNN based method should perform better than our current method and two
baselines. The intuition is that under conditional sampleRNN model, each high resolution sample is
conditioned on both its previous samples and also its low resolution version. Thus, the sampleRNN
is designed to learn not only the extrapolation from low resolution to high resolution but also the
transition among high solution samples along time. The other intuition is that the original samples
could be forced to be the intact unlike the WaveGlow model.

8.1 From sampleRNN to conditional sampleRNN

Vanilla sampleRNN (Fig. 8) is an autoregressive model to generate audio samples. In its vanilla
version, each sample is generated based on the samples that come before it. The building block of
SampleRNN is a hierarchy of tiers, which in turn consist of multiple layer of recurrent neural network
and also multilayer perceptrons. This model is designed to capture the variations on sequences with
long time span. Fig. 8 is an unrolled version of sampleRNN to output p(xi+4|x<i+4) (Xi+ 4 in Fig.
8), p(xi+5|x<i+5), ..., p(xi+11|x<i+11), as the sample level. As you can see in the model, each of
this output samples only depends on the samples before them, thus conforming to the autoregressive
ordering.

7

https://github.com/Abhipray/waveglow
https://github.com/wcAlex/audio-super-res-imgres-approach

Figure 8: vanilla sampleRNN architecture

In our audio super resolution scenario, each sample (such as Xi+4) is generated also conditioning
on its low resolution sample (Y i+4

2
) at the given time stamp. As shown in Fig. 9, So we feed the

corresponding low resolution version of each sample into the multilayer perceptron. Note that the
perceptrons of both Xi+4 and Xi+5 correspond to the same lower version samples Y i+4

2
.

Figure 9: conditional sampleRNN architecture

8.2 Experiment design

In our proposed experiments, we train the conditional sampleRNN model (Fig.9) from scratch on
VCTK data. We will implement the conditional sampleRNN based on its vanilla implementation [9].
We truncate each the high resolution .wav file (16k Hz) into non-overlapping frames, each of which
consists of 1024 audio samples. Thus, each non-overlapping frame can be seen one training sample in
a batch during one training step. And we keep feeding the frames to the conditional sampleRNN until
they cover the entire .wav file. Meanwhile, we shuffle around .wav files to create batches. For the low
resolution (4k Hz downsampled by 4 from high resolution), we first replicate each audio samples
4 times to make it align with the high resolution .wav file and also truncate them non-overlapping
frames. We feed each low resolution frame with the same length into the multilayer perceptrons in
conditional sampleRNN.

8

In inference, we feed one low-resolution .wav to conditional sampleRNN network frame (1024 audio
samples) by frame. The trained network will generate each high resolution sample sequentially with
in one frame and generate next frame afterwards.

For this conditional sampleRNN baseline, we also use PSNR between generated high resolution and
the ground truth as the objective metric and also show their spectrums as the visualization.

References
[1] Volodymyr Kuleshov, S Zayd Enam, and Stefano Ermon. Audio super resolution using neural

networks. arXiv preprint arXiv:1708.00853, 2017.

[2] Kaiming He Chao Dong, Chen Change Loy and Xiaoou Tang. Image super-resolution using
deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell., 38(2):295–307, February
2016. ISSN 0162-8828., 2015.

[3] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
for speech synthesis. CoRR, abs/1811.00002, 2018.

[4] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo,
Aaron C. Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end neural audio
generation model. CoRR, abs/1612.07837, 2016.

[5] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

[6] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, pages 10215–10224, 2018.

[7] Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C Cobo, Florian Stimberg, et al.
Parallel wavenet: Fast high-fidelity speech synthesis. arXiv preprint arXiv:1711.10433, 2017.

[8] Resampy. Resampy upsampler https://resampy.readthedocs.io/en/0.1.5/_modules/resampy/filters.html.

[9] samplernn pytorch. https://github.com/deepsound-project/samplernn-pytorch.

9

	Introduction
	Related Work
	Problem Statement
	Dataset

	Technical Approach
	Approach: Upsample decoder
	Architecture
	Loss Function

	Approach: WaveGlow

	Results
	Result: Upsample decoder
	Training Metric
	Audio Spectrum Comparison
	Analysis

	Result: WaveGlow
	Upsample decoder vs WaveGlow

	Code
	Conclusion
	Future Work: SampleRNN based approach
	From sampleRNN to conditional sampleRNN
	Experiment design

