
Hebbian neurons, cell assemblies and catastrophic interference
Project report for CS376C: Computational Models of the Neocortex

Abhipray Sahoo
abhipray@stanford.edu

June 16, 2020

1 Introduction

Donald Hebb in his book, ”The Organization of
Behavior: A Neuropsychological Theory.” de-
scribes two postulates that aim to describe learn-
ing in the brain (Hebb, 1949). These two postu-
lates have to do with synaptic plasticity and the
idea of cell assemblies. The first postulate is a de-
scription of how synaptic weight strengths change
with different inputs.

“When an axon of cell A is near enough
to excite a cell B and repeatedly or per-
sistently takes part in firing it, some
growth process or metabolic change
takes place in one or both cells such that
A’s efficiency, as one of the cells firing
B, is increased.”

The second postulate describes the idea of cell
assemblies which are groups of neurons that fire
together when an input stimulus is presented. The
activations of these neurons serve to represent the
input stimulus.

In the artificial neural networks literature, these
two postulates have been explored as learning
mechanisms. This paper will describe several
weight update rules inspired by the first postu-
late. Specifically, the Hebbian-LMS algorithm
(Widrow et al., 2015) described will be studied in
detail. We will also study the second postulate on
cell assemblies in the context of ameliorating the
problem of catastrophic interference. Catastrophic
interference, in the life-long learning literature, is
the problem where weights of a network trained on
one task decay when trained on another task. This
leads to a loss in performance in the first task.

2 Learning rules from Hebb’s first
postulate

For clarity, we assume that our neuron model per-
forms a weighted sum of various pre-synaptic in-

puts coming in to produce a post-synaptic output
with an activation function.

y = φ(wTx) (1)

The inputs are the elements of the vector x and
the weights are summarized by the vector w. φ is
some activation function; in the simplest form it is
identity. For the rest of the discussion, we assume
φ is identity.

2.1 Activity product rule
Hebb’s rule says that when a pre-synaptic neuron
fires at the same time as the post-synaptic neuron,
the synaptic weight increases. The modification
to the weight is time-dependent and local to each
synapse. This can be represented mathematically
in many forms; the simplest is the activity product
rule:

∆wi = µyxi (2)

The ith synaptic weight changes according to
the product of the post-synaptic output y and the
ith input xi. µ is the learning rate. This form of
Hebb’s rule is local to a synapse and is correla-
tional. However, the weights can grow without
bound. Anytime y and xi are activated at the same
time, the weightwi increases a fixed amount, caus-
ing the same input to produce an even larger out-
put y; the weight thus grows exponentially as the
output increases.

2.2 Normalized activity product rule
One solution to the unbounded weight growth is to
normalize the weight vector after each update.

∆wi = µyxi (3)

wi(t+ 1) = wi(t) + ∆wi (4)

wi(t+ 1) =
wi(t+ 1)

||wi(t)||2
(5)

This ensures that the L2 norm of the weight vec-
tor is always 1. The weight vector serves to encode
only a direction.

2.3 Weight decay

Another solution to the unbounded weight vector
is to introduce a forgetting factor α that causes a
weight decay. There are three simple variants:

∆wi = µyxi − αwi (6)

∆wi = µyxi − αwixi (7)

∆wi = µyxi − αwiy (8)

Learning rule (6) causes a weight decay inde-
pendent of the input statistics whereas rules (7)
and (8) depend on input statistics. The introduc-
tion of weight decay introduces stable points. For
example, in (6), we can see that there is a stable
point where wi = µ

αyxi.

2.4 Covariance rule

A third solution is to use a co-variance product
rule:

∆wi = µ(y − E[y])(xi − E[xi]) (9)

E is the expectation operation. In practice, it
can be calculated as a running mean over the past
n time-steps. We can see that this rule introduces
a stable point when we observe the equation of the
line for ∆wi against y. The y-intercept is below 0
at −µ(x− E[x])E[y]. ∆wi can take on both pos-
itive and negative values with a stable point where
the line meets the x-axis.

Figure 1: Covariance rule stable point

2.5 Principal and minor components
The common thread across the learning rules so
far has been the product of the input vector x and
the output y. This can be shown on average to be
the correlation between the input and output:

∆wi = µyxi (10)

∆wi = µwTxxi (11)

∆wi = µ
∑
j

wjxjxi (12)

E[∆wi] = µ
∑
j

wjRij (13)

(14)

Here R is the correlation matrix E[xxT]. Rij
contains the correlation E[xixj]. Thus the change
in weights is proportional to the correlation matrix
R.

For some given data x, the correlation matrix is
a second order statistic. Its eigen-decomposition
allows us to see which directions have the largest
variance. An eigenvector v and eigenvalue λ pair
satisfy Av = λv. The eigenvectors of the correla-
tion matrix with the largest eigenvalues are called
the principal components; the eigenvectors with
the smallest eigenvalues are called minor compo-
nents.

As discussed in (Fyfe, 2007), Miller and Mckay
proved the significance of the weight decay terms
in terms of eigenvectors of the correlation matrix.
They showed that if the weight update rule is of
a multiplicative form, then the weight vector con-
verges to a stable point and this stable point is a
multiple of the principal eigenvector.

The multiplicative form leading to principal
components is

∆w = Rw − γ(w)w (15)

Additionally, it was also shown in (Fyfe, 2007)
that the anti-hebbian version of the multiplicative
rule leads to the weight vector converging to the
minor component of the data.

The multiplicative form leading to minor com-
ponents is

∆w = −(Rw − γ(w)w) (16)

2.6 Oja’s neuron
Oja introduced a learning rule that aims to find the
principal component of the input data:

2

∆wi = µyxi − µwiy2 (17)

(18)

This is of the multiplicative form of (15). The
y2 term serves to normalize the weights ||w|| = 1
like the normalized hebbian rule (5).

2.7 Hebbian-LMS
(Widrow et al., 2015) proposed an unsupervised
neuron learning rule that was derived from exten-
sions to Hebb’s rule. The learning rule is

e = φ(y)− γy (19)

∆wi = µex (20)

where φ(y) is a sigmoid function like hyper-
bolic tangent, tanh. This learning rule introduces
two stable points where e = 0 i.e φ(y) = γy. γ is
a constant that determines where the stable equi-
librium points are numerically.

We can expand the learning rule equation:

∆wi = µ(φ(y)− γy)x (21)

= µφ(y)x− µγyx (22)

Hebbian-LMS thus takes the form of (16). It
leads to the neuron learning the minor component,
the direction in the input space explaining the least
variance in the data. It can be modified with a sign-
reversal to find the principal component.

It is interesting that the Hebbian-LMS neuron
derived from extended Hebbian postulates learns
the minor component. It fires strongest with an
input in the same direction of the minor compo-
nent. In other words, it detects when a rare input
vector shows up. The actual output of the neuron
is described as y passing through a half-sigmoid
activation.

The paper discusses clustering behavior of the
Hebbian-LMS. Once the network converges to the
direction of the minor component, it creates a
halfspace with the inward normal vector w i.e
{x|wTx > 0}. Points in this halfspace are the only
ones that cause the neuron to fire. Depending on
the initial conditions, the weight vector could be
pointing in either direction along the minor com-
ponent. Thus, the input space gets partitioned and
the separating boundary is a vector orthogonal to
the weight vector.

Figure 2: Green arrow is the converged weight vector in
the direction of minor component. Red and blue points
show the two clusters.

3 Simulations

We simulated the behavior of several Hebbian
learning rules described in the previous section.
In every case, the weight vector converges to
the principal component of the data except with
Hebbian-LMS where it converges to the minor
component. Each rule used a different learning
rate that led to convergence.

Figure 3: Data along with principal components shown
by black arrows

Figure 4: Red arrow is the initial weight vector. Green
arrow is the weight vector after convergence with Oja’s
rule.

3

Figure 5: Red arrow is the initial weight vector. Green
arrow is the weight vector after convergence with
Hebbian-LMS rule.

4 Neural networks

Networks of neurons that follow the above learn-
ing rule can be created. In order to create a multi-
layer network, the neurons discussed previously
will have to be modified, else they end up learn-
ing the same principal/minor component direction
for their weight vector. This can be done by intro-
ducing asymmetry in the weight decay. For exam-
ple, Oja’s rule has been expanded to allow differ-
ent neurons in the same layer to converge to dif-
ferent principal components. This is called Oja’s
weighted subspace algorithm:

Different neurons in a single layer have the
same inputs but produce different outputs

yi =
∑

wTx

∆wij = µyi(xj − θi
N∑
k=1

ykwkj) (23)

The weighting factors θi can be set to different
values with the smallest value leading to the corre-
sponding neuron weight vector converging to the
principal component. The learned network effec-
tively projects the input vector into the principal
component space.

Such a network required lateral information
flow– each output neuron in a layer shared its out-
put with every other neuron in the layer.

Through simulations of networks of Hebbian-
LMS, it was shown by (Widrow et al., 2015) that
multi-layered networks can learn a good partition-
ing/clustering of the input space. From our discus-
sion so far, it appears that each neuron’s weight

vector converges to be parallel to the minor com-
ponent. Each layer only needs two neurons to en-
code the two different half-spaces; more neurons
would add redundancies. If the first layer had two
neurons with opposite weight directions after con-
vergence, inputs to second layer neurons would
cluster up along two arms as in figure 6. When a
neuron in the second layers learns the minor com-
ponent of this hidden data distribution, it will clus-
ter together points representing higher firing rates
of the two neurons from the first layer.

Figure 6: The post-synaptic outputs y0 and y1 for two
neurons that learn complementary half-spaces. Figure
shows the output points for each input point in dataset
shown in Figure 3

5 Cell assemblies and catastrophic
interference

In the previous section, we looked at how individ-
ual neurons might learn using Hebb’s first postu-
late. Hebb’s second postulate described cell as-
semblies as a mechanism for knowledge represen-
tation and computation. Cell assemblies can be
defined a set of strongly connected neurons. They
can be distributed across different brain areas.

(Pulvermüller et al., 2014) referring to cell as-
semblies as distributed neuronal assembly (DNA)
or thought circuit (TC), discuss how they can be
carriers of cognition: action, perception, memory,
decision making, language etc. Some properties
of interest include ignition, reverberation and ac-
tivity regulation. For a cell assembly to activate, a
critical number of neurons need to fire; this causes
ignition of most other neurons in the cell assem-
bly. The activity in a cell assembly can reverberate
for a period of time and serve to represent it even
after the stimulus has ended. Activity regulation
is required to keep the network from being fully
activated. This can be done with negative feed-

4

back in the cortex and sub-cortical regions. Cell
assemblies can overlap and serve as mechanisms
for relationships between concepts and meanings.

(Pulvermüller et al., 2014) also present a hy-
pothesis for why humans among all species posses
vast cognitive abilities. The hypothesis is that cell
assemblies form such as to minimize the overlap
with other cell assemblies. It does so not by prun-
ing the already existing overlap but by building
stronger connections with cross-modal cell assem-
blies. For example, two cell assemblies represent-
ing a similar concept such as ”wish” and ”desire”
can have great overlap; to reduce this overlap, the
cell assemblies representing the two concepts can
grow to include neurons of cell assemblies repre-
senting the words ”wish” and ”desire”.

Overlap reduction can help tackle the problem
of catastrophic interference. If a cell assembly is
used for a task A, and the brain is now learning
a new task B using another cell assembly, by re-
ducing the overlap between cell assemblies, it can
reduce the possibility of losing ability to perform
task A. Additionally, the learning mechanism has
to selectively target a cell assembly with a high
learning rate and suppress learning rate for cell as-
semblies near the targeted assembly.

The question arises, could networks of neurons
with local Hebbian learning rules self-organize
and form cell assemblies? And how can they re-
duce interference?

The work done by (Tetzlaff et al., 2015)
presents two constraints that learning rules have
to satisfy in order to allow for the growth of cell
assemblies. These are cohesion and competition.

Cohesion is the constraint that if a cell assem-
bly already exists for a given stimulus, i.e has
greater weights going into a cell assembly, then
the weights inside that cell assembly have to be
greater than other cell assemblies also receiving
the stimulus. The learning rule has to push the
weight vector in the direction where a strong stim-
ulus would cause strengthening of weights be-
tween other neurons in the cell assembly. Math-
ematically, this results in the stable fixed point
weight vector being proportional to the product of
the input and output. This constraint is not met
for all the learning rules we have seen earlier. For
example, the Hebbian-LMS rule leads to a fixed

point where

σ(y) = y (24)

w∗ ∝ σ(y)

x
(25)

Competition is aimed at reducing overlap with
other cell assemblies. If one strong presynap-
tic stimulus xi causes postsynaptic activation, its
strength increases as per Hebb’s rule but it also
causes weights for other pre-synpatic inputs xj to
decrease. The fixed point of the rule must be pro-
portional to the inverse of the post-synaptic output
y.

w∗ ∝ 1

y
.

Combining the two constraints leads to the fixed
point:

w∗ =

(
µxy

α(x− F)

)α
(26)

µ weights the cohesion term and α weights the
competition term. α governs the gradient of the
fixed point activity function. F is a constant, the
homeostatic firing rate. (Tetzlaff et al., 2015) use
the following learning rule which leads to the fixed
point of (26):

∆wi = µxiy + α(F − y)(wi)
2 (27)

They call the first term synaptic plasticity and
the second term synaptic scaling. We see immedi-
ately, that this can be written in the multiplicative
constraint of (15).

∆w = µxy + α(F − y)w2 (28)

= µxy + (α(F − wTx)w)w (29)

γ(w) = (α(F − wTx)w) (30)

Thus, like the previous rules we have seen, the
Tetzlaff rule leads to the weight vector converging
to the direction of the principal component of the
input correlation matrix. Unlike the other rules, it
meets the additional constraints of cohesion while
staying competitive. The synaptic scaling terms
prevents different cell assemblies from interfering
with each other. They showed how this learn-
ing rule can be successfully applied to the forma-
tion of cell assemblies that perform complex non-
linear computations for a robotic arm tasked with
picking and placing an object.

5

6 Conclusion

We set out to understand how Hebb’s learning
mechanisms from his two postulates can be used
in artificial neural networks. We focused on neu-
ron learning rules that are local to each synapse.
Most rules with a weight decay term learn the
direction of eigenvectors of the input correlation
matrix. Using simulations, we demonstrated this
behavior with several rules on a synthetic two-
dimensional dataset. We discussed how neurons
can be combined to form networks, for example
Oja’s weighted subspace network or the Hebbian-
LMS network. Networks can have sub-networks
called cell-assemblies which are sets of strongly
connected neurons. Cell assemblies are a power-
ful construct because they can be grown in a way
such as to minimize overlaps and hence amelio-
rate the problem of catastrophic interference. We
then summarized the constraints to local learning
rules that lead to the emergence of cell assemblies.
Future work includes application of cell assembly
growth mechanisms to solve multi-task learning
problems.

7 Acknowledgements

Thank you to Prof. Tom Dean for guiding me and
for the inception of ideas. I would also like to
thank Dr. Widrow for introducing me to his re-
search on applying Hebb’s ideas to biological sys-
tems.

—

References
Colin Fyfe. 2007. Hebbian learning and negative feed-

back networks. Springer Science & Business Media.

Donald Olding Hebb. 1949. The organization of be-
havior: a neuropsychological theory. J. Wiley;
Chapman & Hall.

Friedemann Pulvermüller, Max Garagnani, and
Thomas Wennekers. 2014. Thinking in circuits:
toward neurobiological explanation in cognitive
neuroscience. Biological cybernetics, 108(5):573–
593.

Christian Tetzlaff, Sakyasingha Dasgupta, Tomas Kul-
vicius, and Florentin Wörgötter. 2015. The use of
hebbian cell assemblies for nonlinear computation.
Scientific reports, 5:12866.

Bernard Widrow, Youngsik Kim, and Dookun Park.
2015. The hebbian-lms learning algorithm. ieee
ComputatioNal iNtelligeNCe magaziNe, 10(4):37–
53.

6

